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ABSTRACT. Self-supported electrocatalysts being generated and employed directly as electrode 

for energy conversion has been intensively pursued in the fields of materials chemistry and 

energy. Herein, we report a synthetic strategy to prepare freestanding hierarchically structured, 

nitrogen-doped nanoporous graphitic carbon membranes functionalized with Janus-type Co/CoP 

nanocrystals (termed as HNDCM-Co/CoP), which were successfully applied as a highly-efficient, 

binder-free electrode in hydrogen evolution reaction (HER). Benefited from multiple structural 

merits, such as high degree of graphitization, three-dimensionally interconnected micro-/meso-

/macropores, uniform nitrogen-doping, well-dispersed Co/CoP nanocrystals as well as the 

confinement effect of the thin carbon layer on the nanocrystals, HNDCM-Co/CoP exhibited 

superior electrocatalytic activity and long-term operation stability for HER under both acid and 

alkaline conditions. As a proof-of-concept of practical usage, a macroscopic piece of HNDCM-

Co/CoP of 5.6 cm x 4 cm x 60 µm in size was prepared in our laboratory. Driven by a solar cell, 

electroreduction of water in alkaline condition (pH 14) was performed, and H2 has been 

produced at a rate of 16 ml/min, demonstrating its potential as real-life energy conversion 

systems.    

Hydrogen is a clean, renewable energy carrier and has been actively pursued as an alternative to 

fossil fuels1-3. Sustainable production of hydrogen from water splitting is an appealing solution 

yet requires highly efficient, long-term stable electrocatalyst4, 5. As a benchmark electrocatalyst, 

platinum is sufficiently active in hydrogen evolution reaction (HER)6, but suffers from high cost 

and scarcity. As technological breakthroughs, a variety of non-noble metal catalysts, e.g. Ni2P7, 

Mo2C/MoB8, CoOx
9, CoPS10, MoS2 and its hybrids11, 12, 13, CoP/CNTs14, alloys15, and CoSe2 and 

its carbon hybrids16, 17, just to name a few, have been explored for HER. Among these systems, 

carbon-based hybrids were found to outperform pristine metal ones due to the following factors 
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that are still under debate: i) chemical and electrical coupling effects (charge transfer, 

heterojunction, etc.) between metallic electrocatalyst and conductive carbon18, 19; ii) better 

accessible active centers of metal species endowed by the conductive porous carbon scaffold14 ,20. 

The choice of carbon nanostructures is in this regard critical for design and engineering of HER 

electrocatalyst, and usually powdrous carbon nanostructures such as reduced graphene oxide21-25, 

carbon nanotubes14, 26, N-doped carbons9, 27, are mostly applied in the field. In spite of their 

favorable efficiency in H2 generation, device-wise the powderous electrocatalysts have to be 

engineered into electrodes of defined shape usually via the usage of a polymer binder, such as 

Nafion or polyvinylidene fluoride. The use of binder is a mature processing practice in industry 

for decades, but their presence leads to multiple undesirable effects, including reduced cell 

conductivity, weak polymer/carbon/metal heterojunction, and blocking of the active centers or 

restricted diffusion that leads to reduced catalytic activity. Additionally, the side reactions of 

polymer binders during the electrochemical process are a rising concern28. 

The problem of electrode integrity is solved by applying a macroscopic carbon membrane 

supported electrocatalyst as a binder-free electrodes for HER, in which the synthesis of high-

quality porous carbon membranes is the key feature. It is well-recognized that the carbon 

membrane design should entail a hierarchical pore architecture over broad length scales from 

micro- to meso- to macropores. The macropores afford rapid mass transport for the fluid and gas 

phase, and simultaneously the micro-/mesopores intrinsically contribute to a large specific 

surface area that provides enhanced reaction capacity for the heterogeneous reactions. In this 

context, the electrocatalyst reaches an optimized balance between activity and diffusion 

kinetics29. Equally important, heteroatoms, such as nitrogen, when covalently bound in the 

carbon network, are able to tailor and improve material properties of carbons such as 
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conductivity, chemical inertness and basicity, which are beneficial to their catalytic function in 

HER22, 30, 31. These desirable features raise structural and synthetic complexity and challenge the 

design of carbon membrane-derived electrocatalyst for HER.  

So far, most HER electrocatalysts are known to work efficiently under strongly acidic 

condition, simply because the large amount of H+ facilitates the HER process for thermodynamic 

and kinetic reasons32. Alkaline conditions are more challenging to produce H2 by electrolysis, as 

the system inherently suffers from high overpotentials and instability33. Nevertheless, generating 

hydrogen by electrolysis in alkaline media has been utilized for decades in industry34, 35, as it 

offers high purity hydrogen and more importantly, the alkaline media simplifies the oxygen 

production side and cause less stability problems associated with the catalyst. Therefore, design 

of active, durable and low-cost electrocatalysts that can work well in alkaline media is highly 

desirable from the practical application viewpoint. 

 Herein, we report the synthesis of freestanding, hierarchically porous, nitrogen-doped 

graphitic carbon membranes loaded with Janus-type Co/CoP nanocrystals (termed HNDCM-

Co/CoP), which demonstrate high activity towards HER in both acid and alkaline range. 

Electrochemical measurements showed a low overpotential of 135 mV and 138 mV at 10 mA 

cm-2 in acid and alkaline conditions, respectively, and long-term durability over 20 h of HER 

operation in both acid and alkaline media using HNDCM-Co/CoP catalyst.  

     The synthetic route towards the targeted HNDCM-Co/CoP for HER electrocatalysis is 

displayed in Figure 1, in which a nanoporous polymer membrane (termed as NPPM) built up via 

interpolyelectrolyte complexation was used as a sacrificial soft template (Figure 1a, 1c and 

Figure S1) (see experimental section). A key feature of polyelectrolyte complexes is their 

capability to bind and immobilize metal ions, salts, and charged nanoparticles36, which 
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remarkably simplifies functionalization of the NPPM with metal nanoparticles. Here Co salt was 

chosen because, besides its relatively high abundance in nature, it has been theoretically 

demonstrated that some Co surfaces have a low energy barrier for H adsorption, and thus Co-

based electrocatalysts hold a great promise in HER37. Co2+ ions were immobilized in the NPM 

by refluxing the as-prepared NPM in an aqueous solution of cobalt acetate for 24 h. After rinsing 

with deionized water and drying, the NPM-cobalt acetate precursor was pyrolyzed at 1000 oC 

under N2 flow to form Co nanoparticles functionalized carbon membranes (termed HNDCM-Co). 

The final HNDCM-Co/CoP (Figure 1b, 1d) with a shiny black color was obtained by 

phosphatization of HNDCM-Co using NaH2PO4 at 350 oC for 3 h under N2 flow.  

 

Figure 1, Synthetic procedure of hierarchically porous, nitrogen-doped graphitic carbon 

membranes loaded with Janus-type Co/CoP nanocrystals (HNDCM-Co/CoP).  (a, b) Photographs 

of a freestanding NPPM of 7 x 3 cm2, and a corresponding freestanding HNDCM-Co/CoP of 3.4 
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x 2 cm2 in size. (c, d) the schematic presentation of the NPPM structure and the HNDCM-

Co/CoP. 

Figure 2a shows the SEM image of a cross-section of the HNDCM-Co/CoP hybrid 

membrane, in which the typical gradient of macropore size is clearly observable. The average 

macropore size in zone I, zone II, and zone III are 1.6 µm, 850 nm and 550 nm, respectively, i.e. 

the pore size gradually decreases from top to bottom. The three dimensionally interconnected 

cellular architecture can be clearly recognized in the enlarged SEM image in Figure 2b. On the 

pore walls, plenty of bright dots, i.e. the metal nanocrystals, are observed uniformly dispersed 

(denoted by red arrows, Figure 2c). Transmission electron microscopy (TEM) image (Figure 

S2) discloses the porous structure of the HNDCM-Co/CoP and confirmed again the uniform 

distribution of Co/CoP nanocrystals of 10~40 nm in size throughout the entire membrane. 

Energy-filtered transmission electron microscopy mappings for C, N, Co and P (Figure 2d) 

indicate a uniform distribution of N in the carbon matrix, which is expected due to in situ 

molecular doping of HNDCM with N38. It should be noted that P only exists in the region of Co, 

indicating that low temperature (350 oC) phosphatization of HNDCM-Co using NaH2PO4 could 

not lead to P-doped carbon. Surprisingly, after merging of elemental mappings of Co and P, it 

was found that majority of nanocrystals were composed of Co/CoP Janus-type nanostructures 

(Figure 2e). The phases of Co and CoP were further confirmed by using atomic High-angle 

annular dark-field scanning transmission electron microscopy (HAADF-STEM, Figure 2f, 2g). 

In order to understand the formation mechanism of Janus-type structure of Co/CoP, a single 

Co/CoP Janus-type nanocrystal was analyzed by HRTEM (Figure S3). It was found that the 

region of Co is protected by a few nm thin graphitic layer, while the CoP region is exposed to 

surrounding. Therefore, it is reasonable to conceive that phosphatization reaction firstly occurred 
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on the exposed surfaces of Co nanoparticles and the graphitic carbon protected Co is difficult to 

be phosphatized, thus forming such a Janus-type structure of Co/CoP. According to previous 

reports39, the close contact between metal (Co in our case) and N-doped carbon is effective in 

producing a rectifying effect (Figure S4), which can polarize/activate the interface and improve 

the final catalytic performance.  

The phase of HNDCM-Co/CoP was further confirmed by X-ray diffraction (XRD) and X-ray 

photoelectron spectroscopy (XPS), as provided in Figure S5. The total Co content was 42.8 

mg/g, as detected by inductively coupled plasma-atomic emission spectra. The relative content of 

Co and CoP in Janus-type Co/CoP nanocrystals can be calculated from the XPS spectra (Figure 

S5c) as 13.3 mg/g and 29.5 mg/g, respectively. Furthermore, a HRTEM image (Figure S6) 

shows that a disordered graphitic character is maintained throughout the entire porous 

membrane. The well-developed graphitic carbon membrane endows the HNDCM-Co/CoP with 

favorably high conductivity of 51 S cm-2 at 25 oC (Figure S7). The high conductivity of HNCM-

Co/CoP favors fast charge transport, a mandatory requirement for efficient electrocatalysis. The 

content of N in NHDCM-Co/CoP is 5.4 wt%, as determined by elemental analysis. All of these 

results point out that Janus-type Co/CoP nanoalloy crystals were formed and embedded in the N-

doped porous carbon membrane via the low-temperature phosphatization of HNDCM-Co. The 

functionalization of transition-metal nanocomposite-based electrocatalysts, improving the 

compatibility of these electrocatalysts with electrolytes, is currently one of the most important 

research topics in the field of electrocatalysis39. Mott–Schottky catalysts, made of metal–

semiconductor heterojunctions, have been recently applied to dehydrogenation, artificial 

photosynthesis, and eletrocatalysis40, 41. It is a consensus that the Mott–Schottky effect at the 

metal–semiconductor interfaces of Janus-type nanoparticles can dramatically promote the final 
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performance and stability owing to possible synergetic effects and enhanced electron transfer 

efficiency at the interface between different components (Figure S8). 

 

Figure 2. (a-c), Overview and close view of the cross-sectional SEM images of HNDCM-

Co/CoP. (d) Energy-filtered transmission electron microscopy mappings for C, N, Co and P. (e) 

Merged elemental mappings of Co and P. Red circles indicate Janus-type nanostructures of 

Co/CoP.  Also shown are the HAADF-STEM images of (f) CoP and (g) Co phases in Janus-type 

nanocrystals. 

In addition, the Brunauer-Emmett-Teller (BET) specific surface area of HNDCM-Co/CoP was 

determined by nitrogen gas sorption to be 589 m2/g (Figure 3a). The sharp increase of BET at 
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low pressures (P/P0 < 0.05) is due to the nitrogen filling in micropores below 2 nm, which is 

quantified by the density functional theory (DFT) pore size distribution curves (Figure 3b) 

derived from the N2 adsorption branches. The obvious hysteresis above P/P0 ~ 0.5 is indicative 

of the existence of mesopores. The pore volumes of the micropores and mesopores were 0.07 

and 0.58 cm3 g-1, respectively. It is clear that the porous carbon membrane features not only a 

gradient in the macropore size distribution along its cross-section, but is also simultaneously rich 

in micro- and mesopores. As previously mentioned, the large macropores provide transport 

highways while the micro- and mesopores offer the necessary large specific surface area bearing 

active sites for the heterogeneous reactions. It should be noted that this pore texture in the porous 

carbon membrane is obtained in a single carbonization step without any post-synthesis activation 

treatment. Owing to the high conductivity, satisfactory BET surface area, hierarchical pore 

architecture as well as evenly dispersed Co/CoP nanocrystals, HNDCM-Co/CoP is well suited 

for many electrochemical processes, and it will be exemplified in the model case of water 

splitting as discussed beneath. 

 

Figure 3. (a) N2 absorption-desorption isotherms and (b) the corresponding pore size distribution 

of HNDCM-Co/CoP. 
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    The HER activity of HNDCM-Co/CoP was evaluated by a standard three-electrode 

electrochemical cell in both acid and alkaline conditions and was compared with the metal-free 

carbon membrane HNDCM, and only Co nanoparticle-functionalized carbon membrane 

HNDCM-Co. It is noted that the size and thickness of the three electrocatalysts as well as the 

membranes textures are almost equal. All HER data has been corrected based on impedance 

spectroscopy, as shown in Figure 4. At 10 mA/cm2, HNDCM and HNDCM-Co exhibited 

overpotentials of 823 and 247 mV, respectively. Under the exact same condition, HNDCM-

Co/CoP showed the lowest overpotential of 138 mV, which is in fact one of the best non-noble-

metal electrocatalysts reported so far for HER (Figure 4a) (Table S1). In a basic environment, 

i.e., in 1 M KOH (pH 14), the LSV curves (Figure 4b) present overpotentials of 723 and 216 

mV, respectively, for HNDCM and HNDCM-Co at 10 mA/cm2,  which are slightly lower than 

that in acid condition. It indicates that alkaline conditions are more favorable for N-doped carbon 

based samples than acidic conditions, also for a HER operation. HNDCM-Co/CoP requires an 

overpotential as low as 135 mV, close to that in acidic condition. It should be noted that the 

‘noise’ in LSV curves for HER in both of acid and alkaline conditions were generated by 

perturbations in our membrane catalyst due to the release of large amounts of H2 bubbles that 

were produced at higher overpotentials. Thus far, there are only a few electrocatalysts active in 

both acid and alkaline conditions, due to the incompatibility of the activity of the same 

electrocatalyst operating in the same pH region42, 43. The activities for HER in alkaline are 

usually about 2~3 orders of magnitude lower than those in acidic medium44.  In our case, the 

excellent HER activity of HNDCM-Co/CoP in alkaline condition can be potentially attributed to 

the multiple heterojunctions, i.e. the support interaction with the N-doped carbon as well as the 

bi-phasic character of Co and CoP in the Janus nanocrystals.  
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Tafel plots were used to elucidate the electron-transfer kinetics. The linear portions of the 

Tafel plots (Figure 4c) are fitted to the Tafel equation: ƞ=b logj + a, where j is the current 

density and b is the Tafel slope. The Tafel slopes of HNDCM-Co/CoP are determined to be 

approximately 64 and 66 mV dec-1 in 0.5 M H2SO4 and 1M KOH, respectively. This result 

suggests that the HER over HNDCM-Co/CoP followed a Volmer-Heyrovsky mechanism in both 

acid and alkaline conditions, and the electrochemical desorption step is rate-limiting14,45   

Additionally, stability of electrocatalysts in practical operation conditions is a key parameter. 

We investigated the long-term electro-chemical stability of HNDCM-Co/CoP for HER in both 

acid and alkaline conditions (Figure 4d), and no decay was detected during continuous operation 

of 20 h. Meanwhile, the cyclic voltammetry (CV) durability tests of the HNDCM-Co/CoP 

electrodes for HER in both of acid and alkaline conditions were carried out, as shown in Figure 

S9. Obviously, the HNDCM-Co/CoP electrodes exhibited negligible loss of activity after 1000 

CV sweeps. Herein, N-doping leads to the basicity of the HNDCM-Co/CoP, which could 

improve the electrochemical stability and resistance against oxidation by modifying the 

electronic band structure of the graphitic carbons46, integrated porous membrane structure 

(binder-free), and probably the confinement effect of the thin carbon layer on the nanocrystals 

endow HNDCM-Co/CoP with excellent stability. 
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Figure 4. HER performances of HNDCM, HNDCM-Co and HNDCM-Co/CoP in (a) 0.5 M 

H2SO4 and (b) 1 M KOH. (c) Tafel plots of HNDCM-Co/CoP in acid and alkaline conditions. (d) 

Stability of HNDCM-Co/CoP in 0.5 M H2SO4 (pH 0) and 1 M KOH (pH 14). 

     As an important feature, our synthetic route towards freestanding membrane-type HER 

electrode can be easily scaled up. As a proof-of-concept demonstration for the solar-driven 

electrolysis of water, a large piece of HNDCM-Co/CoP of 5.6 x 4 cm2 in size and 60 µm in 

thickness (Figure 5) was prepared and driven by a solar panel (up to 20 V) for HER in 1 M KOH, 

at an output voltage of non-regulated, fluctuating 20 V. Such extreme and fluctuating conditions 

usually destroy any ordinary electrocatalytic material in short times. It is also noted that this 

membrane was produced in a laboratory carbonization oven, but essentially any larger size can 

be made, given a corresponding carbonization technology. Figure 5 illustrates the HER 
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operation within 10 min, and 160 mL H2 was collected, indicating the practicality of HNDCM-

Co/CoP in simple, decentral H2 production in an environment-friendly manner.  

 

Figure 5. Illustration of HER driven by a solar panel in 1 M KOH with a piece of hybrid 

membrane HNDCM-Co/CoP with a size of 5.6 x 4 cm2 and a thickness of 60 µm as working 

electrode and  the anode is a graphite electrode. In 10 min, 160 mL of H2 was released from 

HNDCM-Co/CoP membrane.  

CONCLUSIONS 

In summary, we presented a general and scalable method to prepare N-doped, hierarchically 

structured porous graphitic carbon membranes with self-supported Janus-type Co/CoP 

nanocrystals, HNDCM-Co/CoP serves as a highly active and robust earth-abundant electrode for 

hydrogen evolution reaction in both acid and alkaline conditions. Ease of large-scale preparation 

in combination with excellent electroactivity and remarkable long-term operation stability make 

HNDCM-Co/CoP promising for industrial-scale HER application. Another unique feature of this 

genre of polyelectrolyte membrane is the ability to incorporate any type of metal ion and 

nanoparticle into the structure. Thereafter, metal nanoparticle functionalized HNCM membranes 

can be readily prepared by carbonization of a metal/polyelectrolyte membrane. We envision 
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different metal functionalized N-doped carbon membrane will provide myriad opportunities to 

develop highly efficient noble-metal-free electrocatalysts for power-to-fuel conversions, as 

discussed in current sustainable energy system solutions. 

EXPERIMENTAL SECTION 

Materials and Reagents. 1-Vinylimidazole (Aldrich 99%), 2,2’-azobis(2-methylpropionitrile) 

(AIBN, 98%), bromoace-tonitrile (Aldrich 97%), and bis(trifluoromethanesulfonyl)imide lithium 

salt (LiTFSI, Aldrich 99%) were used as received without further purifica-tions. Solvents of 

analytic grade were used as received. Poly(acrylic acid) (PAA) MW: 100,000 g/mol, 35 wt% in 

water, was obtained from Sigma Aldrich and used in a powder form after freeze-drying. The 

synthetic procedure of NPM was according to our previous method47.  

Electrochemical Characterizations. The electrochemical measurements were performed with 

an electrochemical im-pedance spectroscopy (EIS) capable channel in a Biologic VMP3 

potentiostat. A graphite rod and an Ag/AgCl (in saturated KCl solution) electrode were used as 

the counter and reference electrodes, respectively. All the applied poten-tials are converted to 

reversible hydrogen electrode (RHE) potentials scale by using equation: E (vs. RHE) = E (vs. 

Ag/AgCl) + 0.217 V + 0.0591 V*pH, after IR correction. Potentiostatic EIS was used to 

determine the uncompensated solution resistance (Rs). The HER activity of HNDCM-Co/CoP 

was evaluated by measuring polarization curves with linear sweep voltammetry (LSV) technique 

at a scan rate of 1 mV/s in 1.0 M KOH (pH 14) and 0.5 M H2SO4 (pH 0) solutions. The stability 

tests for the HNDCM-Co/CoP were performed using chronoamperometry at a constant applied 

overpotential. 

Characterizations.  X-ray diffraction (XRD) patterns were obtained using a Rigaku powder X-

ray diffractometer with Cu Kα (λ = 1.5418 Å) radiation, 2θ angel was recorded from 20 to 80 
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degree. X-ray photoelectron spectroscopy (XPS) data were collected on an Axis Ultra instrument 

(Kratos Analytical) under ultrahigh vacuum (<10-8 Torr) using a monochromatic Al Kα X-ray 

source. The adventitious carbon peak was calibrated at 285 eV and used as an internal standard 

to compensate for any charging effects. A field emission scanning electron microscope (FESEM, 

FEI Quanta 600FEG) was used to acquire SEM images. Transmission electron microscope 

(TEM) and high resolution TEM (HRTEM) images, selected-area electron diffraction (SAED) 

patterns, and the HAADF-STEM-EDS data were taken on a JEOL JEM-2100F transmission 

electron microscopy operated at 200 kV. Nitrogen sorption isotherms were measured at -196 °C 

using a Micromeritics ASAP 2020M and 3020M system. The samples were degassed for 6 h at 

200 °C before the measurements. STEM images were acquired in a probe-corrected JEOL 

ARM200F operated at 80 kV equipped with a cold field emission gun and a high resolution pole-

piece. 
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Figure S1. SEM image of a polymer membrane, which is used as sacrifice for synthesis of the 
gradient porous carbon membrane. The macropore gradually decreased from the top layer to the 
bottom layer. 

 

 

 
 

Figure S2. TEM image of HNDCM-Co/CoP. Inset is the number-averaged size distribution 
histogram of Co/CoP Janus nanoparticles 
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Figure S3. HRTEM image of a Janus Co/CoP nanoparticle. The yellow line-dotted area is 
composed of metallic Co with a lattice d-spacing of 2.16 Å, corresponding to the {101̅0} plane 
of fcp Co, while the adjacent pink line-dotted area stems from CoP with a lattice d-spacing of 
1.87 Å from the (211) plane of CoP, i.e. the nanocrystal is of Janus-type. It can be clearly seen 
that the region of Co is protected by a few nm thin graphitic carbon, and the thickness of the 
graphitic carbon is about 8 nm. 

 

 

 

 

 

 

Figure S4. The rectifying effect arising from the close contact of metal and N-doped carbon. 
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Figure S5. (a) XRD patterns of HNDCM-Co and HNDCM-Co/CoP; (b) XPS spectrum of 

HNDCM-Co/CoP; (c, d) XPS spectra of Co 2p and N 1s , respectively. 

 

The phase structure of HNDCM-Co/CoP was further analyzed by X-ray diffraction (XRD) and 

X-ray photoelectron spectroscopy (XPS). Figure S6a shows the XRD patterns of HNDCM-Co 

and HNDCM-Co/CoP. The four peaks appearing in HNDCM-Co at 26o, 44o, 52o and 76o were 

indexed to the (002) reflection of graphite, metallic Co (111), Co (200) and Co (220), 

respectively. No other Co phase could be identified. After the phosphotization step to grow CoP, 

extra peaks at 32o, 36 o, 46 o, 48o, 52 o, and 58 o were found in HNDCM-Co/CoP, which are 

assigned to the (011), (111), (112), (211), (103), and (301) planes of CoP,  respectively. Thus, 

the XRD data confirm that CoP is incorporated into the hybrid membrane. The XPS spectrum of 

HNDCM-Co/CoP (Figure S6b) further revealed the expected presence of Co, P, C, and N 

elements. The Co 2p high resolution XPS spectrum (Figure S5c) can be deconvoluted into two 

core-level signals, which are located at 780 and 796 eV, corresponding to Co2p3/2 and Co2p1/2, 

respectively. The peak at 781.0 eV is characteristic of Co0 (ref. 1), accounting for 31 % of all Co 



 27

species. The peak at 778.8 eV is typically assigned to the binding energies of Co 2p3/2 in CoP 

nanocrystal2. The total Co content was 42.8 mg/g as detected by inductively coupled plasma-

atomic emission spectra. The relative content of Co and CoP in Janus-type Co/CoP nanocrystals 

can be calculated as 13.3 mg/g and 29.5 mg/g, respectively. The analysis here confirms the 

metallic Co and CoP coexist in the membrane. The N 1s peak (Figure S6d) can be deconvoluted 

into three different bands, 398.1, 399.5, and 400.7 eV, corresponding to the pyridinic (5.2 %), 

pyrrolic (8.9%) and graphitic (85.9%) nitrogen, respectively.  

 

 
 

Figure S6. HRTEM image of the nitrogen-doped graphitic structure obtained from the HNDCM-
Co/CoP sample. It can be clearly observed the presence of tiny mesopores (red line directed). 
The multishells of the pore wall are composed of graphitic layers with a d spacing of 0.34 nm, 
which is corresponding to the (002) plane of graphite.  
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Figure S7. Temperature dependence of conductivity of HNDCM-Co/CoP measured by a four-
probe method. 

 

 

Figure S8. The electron transfer between metal and semiconductor in Janus nanoparticles via 
Mott–Schottky effect. 

 

 

Figure S9. The accelerated cyclic voltammetry (CV) curves over 1000 cycles of HNDCM-
Co/CoP in a) acid and b) alkaline conditions. 
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Table S1. HER performance of HNDCM-Co/CoP in this work, in comparison with several 
representative results with high performance non-noble metal based catalysts from recent 
publications. 

Catalyst Current 
density j 

(mA cm-2) 

Overpotential (vs. 
RHE) at the 

corresponding j 

Condition References 

MoB 10 225  mV Alkaline Angew. Chem., Int. Ed. 2012, 
51, 12703-12706. (S3) 

MoC 10 > 250 mV Alkaline 

 

Angew. Chem. Int. Ed.  2014, 
126, 6525-6528. (S4) 

Co-NRCNT 10 370 mV Alkaline Angew. Chem., Int. Ed. 2014, 
53, 4461-4465. (S5) 

280 mV Acid 

CoOx@CN 10 232 mV Alkaline J. Am. Chem. Soc. 2015, 137, 
2688-2694. (S1) 

Nanoporous MoS2 10 270 mV Acid Nature Mater. 2012, 11, 963-
969. (S6) 

Au supported 
MoS2 

0.2 150 mV Acid Science 2007, 317, 100-102. 
(S7) 

Co−C−N Complex  138 mV Acid J. Am. Chem. Soc. 2015, 137, 
15070-15073. (S8) 

Exfoliated 
WS2/MoS2 
nanosheets 

10 187-210 mV Acid Nature Mater. 2013, 12, 850-
855. (S9); J. Am. Chem. Soc. 

2013, 135, 10274-10277. (S10) 

MoS2/Graphene 10 150 mV Acid J. Am. Chem. Soc. 2011, 133, 
7296-7299. (S11) 

Oxygen-
incorporated MoS2 

nanosheets 

10 180 mV Acid J. Am. Chem. Soc. 2013, 135, 
17881-17888. (S12) 

Co0.6Mo1.4N2 10 200 mV Acid J. Am. Chem. Soc. 2013, 135, 
19186-19192. (S13) 

MoP 10 ~150 mV Acid Energy Environ. Sci. 2014, 7, 
2624-2629. (S14) 

CoSe2 
Nanoparticles/Car

bon fiber paper 

10 137 mV Acid J. Am. Chem. Soc. 2014, 136, 
4897-4900. (S15) 
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Ni43Au57 
nanoparticles/carb

on 

10 ~200 mV Acid J. Am. Chem. Soc. 2015, 137, 
5859-5862. (S16) 

MnNi 10 360 mV Alkaline Adv. Funct. Mater. 2015, 25, 
393-399. (S17) 

Co9S8@MoS2 10 190 acid Adv. Mater. 2015, 27, 4752-
4759 (S18) 

CoS2/RGO-C 

NT 

10 142 acid Angew. Chem. Int. 

Ed. 2014, 53, 12594-12599 
(S19) 

CoS2 10 145 acid J. Am. Chem. Soc. 

2014, 136, 10053-10061 (S20) 

CoP nanowire 

array 

10 106 Acid J. Am. Chem. Soc. 

2014, 136, 7587-7590 (S21) 209 alkaline 

MoCN 10 140 acid J. Am. Chem. Soc. 

2015, 137, 110-113 (S22) 

Ni2P 

nanoparticles 

10 130 acid J. Am. Chem. Soc. 

2013, 135, 9267-9270 (23) 

Mn0.03Co0.97Se2 10 218 Acid J. Am. Chem. Soc. 2016, 138, 
5087−5092 (S24) 

HNDCM-Co/CoP 10 138 mV alkaline in this work 

135 mV acid 
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